林和环保网

生活污水厂出水总氮、总磷高,如何解决?

admin 0

一、生活污水厂出水总氮、总磷高,如何解决?

一、项目概述

项目背景:

1、水资源浪费长期以来,采煤对地下水造成了严重破坏。绝大部分矿井水,被以直排方式,流入河道、田野,这不仅造成水资源的白白浪费,也污染了环境。社会对此反响强烈的同时,煤矿企业也倍感压力。

2、解决矿区饮水问题,大大节省生产用水成本煤矿企业开始对矿井水进行更加深度的处理,有些轻度污染的矿井水,经过处理之后直接可以用于矿区,甚至为附近居民供给生活饮用水;而有的经过简单沉淀过滤处理后,直接用于煤矿生产、消防用水及矿区绿植浇灌等用途,这不仅解决了矿区生活饮用水的紧缺现状,同时在生产用水逐年涨价的情况下,大大节省了生产用水成本。

项目概况:

某煤矿井废水2000吨/天,在了解废水基本情况并对现场进行实地考察后,进行工艺构思并设计解决方案。

二、项目设计方案

进出水水质设计方案:

1、设计规模

设计处理水量:2000m³/d,24小时连续运行。

2、设计进出水水质

该项目设计进水为甲方提供的第三方检测数据。因为要供给矿区生活用水、生活饮用水及排放到地表三类水中。所以,出水既需要达到《生活饮用水水质卫生标准》(GB5749-2006),又要达到《地表水环境质量标准》(GB3838-2002)中的三类水标准。

3、进出水水质设计方案具体参数:

矿井水主要是由于煤矿开采破坏了煤系上覆含水层而形成的井下涌水,初始流入井筒和巷道的涌水未受到污染时为清洁水,在开拓及采煤过程中易受到污染。根据进出水水质可知该矿井水为中性,无有毒重金属物质,但SS、TN含量较高,大肠杆菌数和菌落总数也比较高(需要说明的是一般矿井水中均有一定量的COD,但其主要是由煤粉引起的,并因水中还原性碳元素所致,一般随悬浮物的去除,COD也随之去除)。本工程矿井水处理后,既要作为生活饮用水,又要将多余部分排放至地表三类水中。经以上分析,本工艺主要考虑去除COD、SS、菌落数、TN等。尤其是TN的去除需要达到地表三类标准。由于原水中含盐量并不高,且TN处理精度要求严格,因此,本工艺采用了专业脱氮树脂对总氮进行深度处理。

综上所述,项目采用了“生化、混凝沉淀及专用脱氮离子交换树脂”的组合式处理工艺。

1、根据水中氮的形态,可对该废水直接进行反硝化,由于废水中BOD5的含量很低,需另外投加碳源,但外加碳源无法精确控制,会引起有机物超标。因此需在反硝化池后接氧化池,去除多余碳源,同时对废水中可能存在的有机氮或氨氮进行硝化反应,将其转化为亚硝态氮和硝态氮。好氧池末端设有内循环,将好氧池末端水,部分回流至缺氧池前段,对残余或部分新产生的亚硝态氮和硝态氮进行反硝化脱氮,从而对生化脱氮起保障作用。2、因出水需达到《地表水环境质量标准》(GB3838-2002)中的三类水标准,即总氮要≤1mg/l。该标准较严,普通的生化处理脱氮很难达到,所以对好氧池后端的出水进行离子树脂交换,用专业脱氮树脂对废水中硝态氮进行深度去除,稳定做到1mg/l以下。

四、流程及单元工艺设计

工艺流程:

1、主要工艺流程图

调节池:

主要作用:均质、均量,稳定pH值在6-8之间;

结构:地下钢结构;

工艺尺寸:14x10x4.5m(有效水深4米);

有效容积:536m³;

反应时间:6.45h;

主要设备:

1、浮球液位计:数量:1台;

2、离心泵:数量2台(1用1备);Q:100m3/h,H:1520m,N: 15kw;材质:铸铁;

3、引水桶:数量2个,材质:Q235;

4、电磁流量计:数量:1台,口径:DN150。

缺氧池:

主要作用:废水进入铁碳床,通过微电解反应对有机物进行预氧化,提高废水可生化性,为后续生化处理创造条件;

结构:半地下钢砼结构;

设进水硝态氮:25mg/L,出水硝态氮:8mg/L;

设计污泥负荷:0.06kgNO3-N/(kgMLSS.d);

MLSS:2500mg/L;

有效容积:400m3;

工艺尺寸:16x5x5.5m(有效深度5m);

反应时间:4.8小时;

主要设备:

1、乙酸钠加药系统:

机械隔膜泵:数量:1个;Q:200L/h,P:3bar;

溶药桶:数量:1个;材质:PE;容积:5m3;

溶药桶搅拌器(不锈钢材质):数量:1台;

2、组合填料:400m³;材质:醛化维纶丝

3、填料框:材质:Q235;2套;

4、潜水搅拌器:1.1kw;4台;材质:sus304。

好氧池:

主要作用:在有氧状态下,微生物降解废水中的有机物,对有机氮进行硝化作用;

结构:半地下式钢砼结构;

工艺尺寸:16x5x5.5m(有效水深4.8米);

有效容积:384m³;

反应时间:4.6h;

主要设备:

1、曝气盘片:数量:600套;盘片直径:200mm;膜材质:EPDM;

2、组合填料:数量:560m3;材质:醛化维纶丝;

3、填料框:数量:2套;材料:Q235;

4、罗茨风机:数量:2台(1用1备);

Q:25.92m3/min,H:6m,r:1000r/min, N:45kw

5、内回流泵:数量:2台(1用1备);Q:100m³/h,H:10-15m;

6、引水桶:数量:2个。

沉淀池:

主要作用:利用泥水密度差,对絮凝反应出水实现泥水分离,出水自流进入水解酸化池,污泥重力流排入已建污水处理系统污泥池,使出水SS小于8mg/l;

结构:半地下钢砼结构;

表面负荷:0.5m3/m2.h;

工艺尺寸:Φ12x4.5m;

主要设备:

1、周边传动半桥式刮泥机:数量:1台;直径:12m;材质:碳钢防腐;

2、污泥回流泵:数量:2台,1用1备;Q:100m³/h,H:10-15m。

中间水池:

主要作用:起二次提升作用;

结构:半地下钢砼结构;

设计规模:2000m3/d;

设计流量:83m3/h;

工艺尺寸:14x6x4.5m(有效水深4米);

水力停留时间:4.0h;

主要设备:

1、浮球液位计:数量:1台;

2、离心泵:数量2台(1用1备);

Q:100m3/h,H:20-25m,N: 3 kw;材质:铸铁;

3、引水桶:数量2个,材质:Q235;

4、电磁流量计:数量:1台,口径:DN150。

砂、炭滤池/罐:

主要作用:去除比重较轻,不易通过重力作用去除的悬浮物及有机物杂质,过滤精度20μm,防止离子交换树脂堵塞;

结构:半地下钢砼结构;

设计规模:2000m3/d;

设计流量:83m3/h;

工艺尺寸:Φ3.25x3.5m(内径*总高);

主要设备:

1、石英砂罐:数量:1套,填充高度1200mm;

2、活性炭罐:数量:1套,填充高度1200mm;

3、滤料:各10m³。

保安过滤器:

主要作用:进水前对原水进行过滤处理,除去固体悬浮物杂质,控制SS<1mg/l,防止堵塞树脂;

材质:SUS304;数量:1台,1μm滤芯。

离子交换床:

主要作用:在进水硝酸盐氮8mg/l左右情况下,保证出水总氮含量<1mg/l。用常规的普通阴离子交换树脂处理含硫酸盐水中的硝酸盐是困难的。因为树脂几乎交换了水中的所有的硫酸盐后,才与硝酸盐交换。即硫酸盐的存在会降低树脂对硝酸盐的去除能力。

采用科海思(北京)科技有限公司Tulsimer®A-62MP硝态氮选择性树脂优先交换硝酸盐,对硝酸盐的交换容量不受水中硫酸盐(<500mg/l)的影响。A-62MP树脂对水中(低盐环境)阴离子的选择性顺序依次为:NO3- > SO42- > Cl-> HCO3-

结构:Q235;

单组设计流量:45m3/h;

工作流速:8BV/h;

单组工艺尺寸:Φ2.35x3m;共2组,一用一备;

树脂有效高度:1.5m;

主要设备:

1、钢结构罐体:Φ2.35x3m,数量2套,一用一备;

2、树脂体积:13m³;

3、再生罐:10m³;材质:PE;

4、再生泵:8-10m³/h,H:10-15m;耐腐蚀;数量:3台,2用1备;

5、玻璃管流量计:8-10m³/h,数量,2台。

污泥池:

主要作用:接受沉淀池污泥,并由泵送至原污泥处理系统;

结构:半地下钢砼结构;

工艺尺寸:5.5x3.5 x2.5m(有效水深2米);

有效容积:33.28m³;

主要设备:

1、叠螺机:DL301,数量1套;

2、螺杆泵:G30-1,数量2台,1用1备;

3、液位计:数量:1台。

紫外杀菌消毒:

经过专用脱氮树脂处理,总氮达到地表三类的水,一般经过杀菌消毒装置后用于矿区生活饮用水,余量部分会直接达标排放或用于浇灌绿植及矿区其他生产、生活用水。

3、运行中部分问题解决办法汇总

(1)总氮出水不达标:树脂进水总氮>10mg/l,则调节污泥回流比,控制生化产水总氮含量;流速过快,导致接触时间短,则需降低流速,正常流速范围5-20BV/H;树脂进水压力不够,建议2-3kg的进水压力为宜;布水器布水不均,大罐体建议采用爪状布水器。

(2)树脂污染:树脂被悬浮物杂质或活性污泥(可能有水溶性有机物)污堵,用10%氯化钠+2%氢氧化钠的碱性盐溶液逆流快速冲洗(4BV/H流速),直至出水干净清澈为止,辅以空气擦洗效果更佳。

(3)再生不下来:树脂吸附效果没问题,再生总是不彻底,则需要排查罐体尺寸(反洗膨胀空间是否足够)、再生/反洗泵流量、扬程及管路是否能满足使用要求(过大或过小)、再生剂成分是否有问题(是否含有强氧化剂、成分含量够不够等)。

(4)微生物滋生:间歇运行,超过7天以上不运行,则需用盐水浸泡,以免藻类和细菌等微生物滋生,影响树脂功能,下次使用前冲洗干净继续使用。

二、氨氮比总氮高的原因?

因素1:过硫酸钾的提纯。

由于最后是根据吸光度来测定总氮含量的,而过硫酸钾的纯度对吸光度影响很大,根据科学实验证明,没有提纯的过硫酸钾溶液的吸光度,远大于提纯的过硫酸钾溶液,因此必须对过硫酸钾进行提纯,假如纯度不足,自然最终的数据也就不准确了。

因素2:过硫酸钾分解不完全。

说到过硫酸钾,它可不止那么一点叫你头疼,因为即便提纯了,过硫酸钾溶液的浓度,也会对吸光度造成挺大影响。

基本过硫酸钾溶液浓度越高,吸光度就越高。所以过硫酸钾在对水样进行消解时,假如分解不完全,同样也会造成实验误差。

因素3:过硫酸钾的空白值。

三、出水总氮比进水总氮高什么原因?

这主要是由于进水中总氮(特别是有机氮)含量较高,再者反应时间不够造成的。还有,一些污水厂进水中掺杂了工艺很难处理或处理不了的工业废水,对后续硝化菌造成严重影响,甚至死亡(只是生化处理中需要的生物死亡,并不是所有微生物死亡)。而有机氮废水,则可以通过一般的异养菌进行高效的氨化作用(生成氨氮的过程)。这样就导致了氨化速率高于硝化速率,出水氨氮浓度比进水浓度高。

四、废水处理总磷高怎么解决?

一. 概述

人类的活动导致大量氮、磷等物质进入自然水体,引起各种浮游生物和藻类迅速繁殖,从而导致水质恶化,影响水生植物正常的光合作用,鱼类等各种水生生物大量死亡。近年来,水体富营养化越来越受到人们的重视,水质恶化已经严重影响到了人们正常生活。

含磷废水主要来源于工业原材料、各种洗涤剂、农药、化肥以及人类生活污水。目前,国内外常用的处理方法总体上可分为化学法、生物法、吸附法、结晶法等单一工艺,高分子膜技术和复合材料也逐步运用于含磷废水的处理当中。

二. 处理工艺

通常处理废水中的磷,一般采取化学法、生物生化法、吸附结晶法。

化学法除磷的原理是将化学药剂投加到含磷废水中,试剂与废水中的磷酸根离子发生化学反应,生成不溶解性磷酸盐沉淀,通过过滤去除磷酸盐沉淀,从而达到除磷的目的。一般使用钙盐、铝盐、铁盐和磷酸根形成沉淀。近几年在国内最新处理含磷废水的方法是,利用铵盐、镁盐会与废水中的磷酸盐反应会生成难溶的复盐磷酸铵镁,又名鸟粪石处理法。但此方法所以投加的药剂比例控制很重要,否则起不到很好的效果。

公隆化工推荐的Eugene KP-903除磷剂,可以有效去除污水中的正磷和次亚磷,操作简单、除磷效果稳定、处理效率80%以上,当废水中磷的浓度较大或有一定波动时,仍能保持较好的除磷效果。相比于其他方法,该除磷剂具有总磷去除率高,工艺简单,污泥少,成本低的优势。

三. 测试分享

上海某汽车配件厂的磷化废水,采用传统的氯化钙处理时的总不能达标,由于磷化废水中含有大量次亚磷,和钙盐不能直接形成沉淀,在采用我司除磷剂Eugene KP-303处理后,原本不能达标的磷,能除到0.5ppm以下,满足达标排放;原水总磷浓度420ppm,通过投加我们的除磷剂KP-303 3kg/m3和4.2kg/m3,再配合我们的粉体絮凝剂絮凝沉淀,静置沉淀后的水质清澈透明,且总磷达到客户要求。

测试数据:

测试项目原水3kg/m34.2kg/m3
总磷/ppm42030.50.45

五、总氮总凯氏氮区别?

凯氏氮是指以基耶达(Kjeldahl)法测得的含氮量。

它包括氨氮和在此条件下能转化为铵盐 而被测定的有机氮化合物。此类有机氮化合物主要有蛋白质、氨基酸、肽、胨、核酸、尿素 以及合成的氮为负三价形态的有机氮化合物,但不包括叠氮化合物,硝基化合物等。总氮包括溶液中所有含氮化合物,即亚硝酸盐氮、硝酸盐氮、无机盐氮、溶解态氮及大部分有机含氮化合物中的氮的总和。

六、总氮,总凯氏氮,区别?

凯氏氮是指以基耶达(Kjeldahl)法测得的含氮量。它包括氨氮和在此条件下能转化为铵盐而被测定的有机氮化合物。

此类有机氮化合物主要有蛋白质、氨基酸、肽、胨、核酸、尿素以及合成的氮为负三价形态的有机氮化合物,但不包括叠氮化合物,硝基化合物等。

总氮包括溶液中所有含氮化合物,即亚硝酸盐氮、硝酸盐氮、无机盐氮、溶解态氮及大部分有机含氮化合物中的氮的总和。

七、氨氮比总氮高多少为合理?

总氮一般是氨氮的20倍。总氮,简称为TN,水中的总氮含量是衡量水质的重要指标之一。总氮的定义是水中各种形态无机和有机氮的总量。包括NO3-、NO2-和NH4+等无机氮和蛋白质、氨基酸和有机胺等有机氮,以每升水含氮毫克数计算。

八、氨氮高总氮低什么原因?

水质检测时,氨氮分析结果高于总氮可能的原因

水质检测时,氨氮分析结果高于总氮可能的原因有:

1、样品引入的误差 由于水中的氮化合物是在不断变化着的, 采集后送回实验室等待实验 分析的样品, 它们的存放时间、 存放地点, 光照情况等, 甚至分析人员 取样的先后次序等, 都会给氨氮和总氮的实验分析带来不同的误差。

2、 实验环境引入的误差 在实验室周围有卫生间或存放氨水等等, 使实验室的空气不同程度地 常含有氨和铵盐, 氨和铵盐都极易溶于水, 使实验用水也不同程度地 含有铵离子。 可以说, 整个实验分析过程都难达到无氨操作, 这种环境 当然对氨氮和总氮的分析实验带来用全程序空白难以完全扣除的误差, 尤其给氨氮的实验测试带来的正误差更直接、更大。

3、实验条件引入的误差 氨氮的分析通常采用较为经典的纳氏试剂光度法, 虽然显色要求碱性 环境, 但没有长的前处理过程, 直接显色测定后, 就可以计算得出结 果。当中实验条件一般没有大的误差引入。总氮的分析就要经历在碱性 条件下 30min 的加温加压处理, 使样品中所含的不同形态、 不同状态的 氮全部转化为高价的硝酸根离子, 用稀盐酸调节样品的 pH 值后, 在紫 外分光光度计上比色测定。 这相对于氨氮的测定说来, 是一个很长的前 处理过程, 当中最为重要的是前处理的效率问题, 因为任何前处理的 效率都很难达到 100 % , 也就是说, 样品中氮化合物在前处理后的转化 不可能为 100 % ,这当中必有误差存在。

4、样品浊度引入的误差 总氮分析前处理能消除的浊度影响在氨氮分析中消除不了, 加上比色 时常用不同种比色皿, 这几种影响因素加起来, 对最后结果带来差异。

5、不同分析人员引入的误差所以,本人认为重点要做到: (1)对于总氮和氨氮的分析时间要保持一致; (2)测总氮是要消除浊度的干扰。

九、氨氮低总氮高什么原因?

出水氨氮低,但是总氮却很高,因可能有两点:

1.反应池溶解氧浓度很高,没有反硝化的阶段,所有的氨氮全被氧全成硝态氮,这种情况总脱氮效率不高;

2.虽然反应池有反硝化段,但是来水的碳:氮比小于5:1,氮的量较高,反硝化时没有足够的碳,所以也会造成总氮非常高。

十、出口总氮高怎么处理?

答我认为可以用一个吹风机放在出口处吹就可以了。